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 Approaches for  Cluster  Analysis of Activity Locations along Streets: from Euclidean 
Plane to Street Network Space 

 
ABSTRACT 

Different from many natural phenomena (such as soil categories and vegetable species), 
the distributions of some social and economic activities, especially those in urban areas, are 
subject to location restriction imposed by urban street network. Such examples include crime 
offense locations, traffic accident locations, and different types of commercial service 
locations, just to name a few. However, many investigations of such distribution simply ignore 
the restriction of street network and assume that the point locations can be located anywhere 
across the study area. Moreover, most existing methods for analyzing and visualizing point 
clustering are designed to handle distributions on Euclidean plane.  

This paper starts from a brief discussion of the geometrical and topological properties 
of street network space and their difference from Euclidean plane. The author then provides 
formal discussion of extending both distance approach or zoning approach for point clustering 
analysis from Euclidean plane into street network framework. Empirical analyses of crime 
clustering patterns along streets are reported in the paper. By comparing the findings from 
applying a street network framework versus a Euclidean plane, it is showed that possible false 
conclusion of point pattern is an issue if a space framework is inappropriately adopted. 
Emphasizing that street network space should be applied when studying activities distributed 
along streets, this paper promotes further studies to extend clustering analysis techniques from 
Euclidean plane to other types of space framework (e.g. street network space) that can better 
capture the distribution nature of activities under investigation.  
 
INTRODUCTION 

Spatial statistics adds a geographical dimension to data and makes integration and 
analysis easier (Meliskova 2000). Exploratory spatial data analysis (ESDA) is mainly based on 
the techniques of spatial statistics and geographical information systems (GIS); its power of 
spatial pattern detecting and explanation highly relies on the capability of handling spatial 
autocorrelation. Clustering analyses assess the spatial autocorrelation of points through 
evaluating the existence of clustering as well as identifying the locations of clusters. There are 
two major groups of methods for clustering analysis of point patterns – distance criterion or 
zoning technique. For the former, the metric distance separation among points of observation is 
compared with that of a random distribution; a clustering conclusion is reached if the observed 
points are closer to each other than those in a random pattern. For the latter, a zone system is 
defined and draped over the whole study area; the points are claimed to be clustering in certain 
zone(s) if there are more points in the zone(s) than there could be for a random distribution. 
There is an abundance of literature on clustering analysis of point patterns from both 
methodological (e.g. Diggle 1983; Boots and Getis 1988; Bailey and Gatrell 1995; 
Fotheringham et al. 2000) and application (e.g. Rushton 1996; Kulldorf 1998; Craglia et al. 
2000; Lu and Thill 2003) perspectives.  

As most GIS functions, the majority techniques of spatial statistics in general and 
clustering analysis in particular assumes the spatial entities under concern are referenced to the 
coordinatized Euclidean plan. However, “ there are many situations for which representation in 
a Euclidean space is not the most appropriate model, nor may even be derivable”  (Worboys et 
al. 1997, 35). Worboys et al. mentioned such examples as travel time spaces, qualitative 
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distances and flow spaces (Worboys et al. 1997). Realizing this problem, a few researchers 
have made effort to expand the clustering analysis from Euclidean plane to other appropriate 
spaces. For example, Okabe and colleagues have conducted research to develop k-function 
analysis for point features distributed along street network (Okabe et al. 1995; Okabe and 
Yamada 2001). Yamada and Thill (2004) compared k-functions for planar and network spaces 
for the distribution of highway traffic accidents. Further, Levine and Associates, with the 
support from US Department of Justice, implemented the k-function for both Euclidean plan 
and grid space for the analysis of point distribution (Levine 2002).  

This paper discusses the major challenges for point clustering analysis in one type of non-
Euclidean space – street network space. It further explores the possible avenues of addressing 
these problems by pointing out that both global and local spatial statistics techniques for point 
pattern analysis have the potential of being extended from Euclidean plane into street network 
space if the representation and computation of street network distance and street zoning 
topology can be effectively and efficiently handled. Two empirical applications of clustering 
analysis of auto thefts along streets are presented to illustrate the approach being promoted by 
the author. 

 
GOING BEYOND EUCLIDEAN PLANE 

It has long been realized that Euclidean geometry is not the best for urban geography 
considering the restrictions imposed onto socioeconomic activities by urban street system (e.g. 
Krause 1975). Recent research has once and again recognized the importance of accounting for 
the difference between Euclidean and street network spaces when examining urban activities 
(e.g. Okabe and Okunuki 2001; Yamada and Thill 2003; Horner and Murray 2004). The major 
challenge for clustering analysis of point activities along street is that most existing methods 
are designed based on distance and spatial separation measurement on Euclidean plane, i.e. 
distribution can be continuous anywhere on the surface and distance between locations is 
straight-line distance. However, locations in streets might be far away from each other when 
traveling along streets while appearing close to each other in a continuous Euclidean plane. In 
figure 1, P1, P2, and P3 are three locations along street network; while P2 is closer to P1 than 
P3 is in a Euclidean plane, the street distance from P1 to P3 is shorter. Hence, for point pattern 
analysis in a non-Euclidean space, the measurement of distance should account for the 
continuity nature of the space. 

 

 
 

Figure 1. Distance measurement in Euclidean plane versus street network 
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Another major issue of concern for point pattern analysis is related to topology of the 
operational space. Non-metric measure of proximity in a street network, such as the number of 
service nodes or stops between locations (Fabrikant et al. 2004), is an example. As raised by 
Fabrikant et al. (2004), to evaluate the spatial separation between two locations along a subway 
route, it is worth investigating if the length of the route network more meaningful or the 
number of stops between the two locations more indicative. It is easy to imagine for anyone 
who has experience driving in urban streets that, more often than not, it is the street 
intersections not the length of street segment (i.e. section of street that is between two 
neighboring street intersections) that makes difference for the traveling speed and time. Hence, 
the connection / proximity between two locations in a street network might be more sensitive 
to the number of street intersections than the metric distance between them. In another word, 
two locations that are not so close along one street (e.g. P1 and P4 in Figure 1) might be more 
connected to each other than two other locations that are close to each other metrically but on 
different streets (e.g. P3 and P4 in figure 1). Jiang and Claramunt (2004) adopted a “named-
street-oriented”  view to describe the topology of urban street network and developed a k-
clustering coefficient to measure the connectivity of streets. Similarly, street network distance 
or other non-metric measurement (e.g. number of subway stops between locations, as proposed 
by Fabrikant at al. (2004)) rather than Euclidean distance should be used for the assessment of 
spatial separation and connection between locations in streets. 

 
CLUSTERING OF LOCATIONS IN STREET NETWORK SPACE 

Given the special geometry and topology properties of street network and locations along 
streets, it is inappropriate to directly apply point pattern analysis techniques from Euclidean 
plane to a space of street network. Okabe and colleagues (Okabe et al. 1995; Okabe and 
Yamada 2001) developed a global scale measurement of point clustering in street network – 
network k-function. Instead of using direct Euclidean distance to measure the separation 
between neighbor points, network k-function uses distance along street network. Yamada and 
Thill (2004) applied both the traditional k-function and a network k-function to assess the 
clustering of traffic accidents along highway; the study showed that false positive is a problem 
with traditional k-functions. For a comprehensive evaluation of applying traditional planar k-
function to analyze locations distributed in a street network, Lu and Chen (2004) links the 
propensity of false alarm from traditional k-function with the properties of urban street network 
and point location distribution. To summarize, existing studies have proved that it is dangerous 
to simply extending the point pattern analysis techniques from Euclidean space to street 
network, since these techniques can not account for the geometric and topological properties of 
street network space. But there is a definite need for a systematic development of the 
counterpart in street network space for the point clustering analysis techniques in Euclidean 
space. 

For the clustering analysis of activity locations in Euclidean space, two groups of 
approaches are commonly adopted. One group uses continuous function of distance metric to 
measure spatial separation between locations; the other group implements a zoning system 
onto the study area and measures separation using topological relationship between zones. 
Anselin (1996) named them distance view and neighborhood view respectively. Boots and 
Getis (1988), on the other hand, classified them into distance method and quadrat method. As 
discussed above in the paper, both the geometric distance measurement and the topology 
property between locations along street network are different from those in traditional 
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Euclidean plane. The techniques for clustering analysis of point patterns in a street network 
need to account for the difference and treat distance and connection between locations 
accordingly. Put another way, the following two aspects need to be taken care of before 
clustering analysis techniques for point locations along street network can be fully developed – 

 
Distance approach: substitute Euclidean surface distance with network distance  

Let � 2 denote a 2-D Euclidean plane, �  denote a street network space, and �  denote a 
set of points under assessment. Also, let d� (i, j) denote the distance between point i and point j 
in space � 2, and d� (i, j) denote the network distance between point i and point j in space � . 
The network distance, d� (i, j), is defined as a route distance, i.e. the shortest-path distance 
along the street network between point i and point j. For all point clustering analysis in � , not 
only the distance between points of concern, i.e. d� (i, j), should be network distance, but also 
the estimated “expected distance” , d’ � (i, j), to which the observed distance is compared to in 
order to judge the degree of clustering should be generalized using network distance. The 
capability of efficiently capturing network distance and connectivity measurement is very 
sensitive to the size of street network and point locations under concern.  

Okabe and Yamada’s (2001) network k-function and its implementation is a good 
example of extending point pattern analysis technique from � 2 to �  while successfully taking 
care of distance measurement. Given a set of points, � , that are distributed on a plane, � 2, the 
original Ripley’s planar K compares the observed K value, K(d� ), with the expected K value, 
K’ (d� ). 
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where, d�  indicates the distance for which the K value is calculated, �  is an unbiased estimation 
of the distribution density of the points in � , E represents the expected number of points within 
distance d�  to a random point in set �  over plane � 2, Pi (d� ) denotes the number of points 
observed within distance d�  of point i, and n is the total number of points in � . Through 
increasing d�  from small to large, typically with 50-100 small increments to cover the extent of 
point set �  on plane � 2, a series of K(d� ) can be obtained and plotted against d� .  Monte Carlo 
simulation is usually conducted to generate a series of random distributions of n points on the 
same plane � 2 in order to estimate the expected K’ (d� ). For each simulated distribution, a 
series of K’ (d� )s are calculated for different d� s. The simulation is usually conducted to 
generate 100 or more distributions. The observed K(d� ) is then ranked together with the set of 
K’ (d� )s from simulated distributions for certain distance. By comparing K(d� ) with K’ (d), one 
can tell if the observation set, � , is clustered at certain distances and dispersed at others. 

For network k-function, given a set of points �  distributed on street network � , the total 
link of the network is LT and the total length of LT is lT , the expected network k-function under 
complete spatial randomness (CSR) can be defined as 

),,()(© 1
Tkk LdEdK xw ´= -                                                                   ............ (3) 

where �  is the density of points in � , calculated as � = n/lT, �  represents the set of points (p1, 
p2,…, pn) in � , E is the expected number of points within network distance d�  to a point in �  on 
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LT. The expected number of points within d�  to a point in �  over network LT is estimated under 
a Poisson process. Then the observed network K(d� ) can be estimated as 
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where lTi(d� ) denotes the total number of points on a subset of LT, LTi(d� ). The network 
distance between point i and any other point on LTi(d� ) is less than or equal to d� . Similar as 
planar k-function, Monte Carlo simulation is performed to obtain an estimation of expected 
network K value, K’ (d� ). When a series of K’ (d� )s are obtained, the K(d� ) is ranked together 
with and compared to the distribution of K’ (d� )s to decide if the observed points are clustered 
or dispelled in �  at different network distances. 

Similar extension can be made for other distance approach techniques (e.g. nearest 
neighbor method or p-means technique) to develop point clustering analysis method from � 2 to 
� . The major technical challenge is to handle the computation when calculating dks and when 
simulating distribution in �  under certain conditions (Lu and Chen 2004). Note that, in 
addition to compute network distance dk rather than straight-line distance d�  for any location 
pairs (see figure 1), calculation in �  has to dynamically keep track of the links and length of 
the whole or partial street network according to the location pairs being included. Hence, the 
functioning of related extension from � 2 to �  for point pattern analysis is, to a large degree, 
depending on the computation capability and algorithm efficiency to simulate point distribution 
in �  and to measure the geometry and topology relationships between locations in �  while 
keeping track of the whole or part of the network under investigation. 

 

Zoning approach: define 1-D zone in a network space rather than 2-D plane zone 
Again, let � 2 denote a 2-D Euclidean plane, �  denote a street network space, and �  

denote a set of n points under investigation, {Pi(xi, yi), i=1, 2, …n}. Further let �  denote a set of 
m service points, {Qu(xl, yl), u=1, 2, …m}, for which a zone system in �  need to be defined. 
Different from distance approach, zoning approach assumes a catchment or impact zone for 
each of the point in � . Let Z� (u) indicates the zone for service point u in � 2 and Z�  (v) 
represents the defined zone for service point v in � . Since zoning methods represent spatial 
proximity by number of zones, the topology (i.e. contiguity relationship) between zones is 
critical. Hence, there are two aspects for the zoning approach – definition of zone and 
description of zone contiguity.  

Zones in Euclidean plane, i.e. Z� (u) in � 2, are usually defined as either a regular grid or 
irregular catchment for Qu in � . Let F(d� (P0 , Qu)) be a zone definition function based on the 
distance between  any point P0Î � 2 and QuÎ  � . The zone of service point u is a polygon that 
can be described as 

  )),(()( 0, uu QPdFauZ WWW =               …………  (5) 

where au, �  is a parameter describing the impact of service point Qu to its surroundings in 
Euclidean space, � 2; d� (P0 , Qu) is the Euclidean continuous distance between Qu and P0. 
When au, �  is a constant for all u, then the zoning system is a regular grid; otherwise, an 
irregular zone system presents. Moreover, if distance deterrence function, F(d� (P0 , Qu)), has 
anisotropy property, the zones defined will be less compact and probably will show as irregular 
polygons.  
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When extending the zone definition from Euclidean plane to street network space, zones 
become line segments instead of polygons.  Z�  (v) is the zone for service point v in network � . 
The zones do not necessarily be of same size, i.e. street zones might not be equal in length. The 
definition of Z�  (v) can be described as 

  )),(()( 0, vv QPdFavZ KKK =                                                       …………..    (6) 

where av �   is a parameter denotes the impact of service point Qv to its surroundings in network 
space � ; d � (P0 , Qv) is the network distance between any point P0Î  �  and service point QvÎ  � ; 
F(d�  (P0 , Qv)) is a distance deterrence zone definition function. With av, �  being a constant, the 
zone system in �  will be made up of equally-sized streets; otherwise, some street zones will be 
longer than others, depending on the service point. Also, if showing a property of anisotropy, 
the distance function will define zones with point Qv not being the center of street zones. 

Contiguity in Euclidean plane is a 2-D property, meaning that zones are neighboring to 
each other by sharing common boundaries for the most cases (with one point connection 
occasionally). GIS software that handles topological information has the capability of 
identifying neighboring polygons. Furthermore, a neighbor’s neighbors can also be identified 
for a zone so that high-order neighbors for a service location’s catchment can be tracked. 
Based on the definition of zones, evaluation of the clustering of observed points { Pi}  in the 
catchment of service points Qu (or Qv) can be conducted by comparing the count or density of 
Pis in Z� (u) (or Z�  (v)) with that of expectation under random distribution. Point clustering of 
Pis in higher order catchment for each service point (which can be built based on the zone 
contiguity pattern) can be evaluated similarly. For Euclidean plane analysis, it is hard to 
estimate the number of neighbors that one polygon might have; but for street network, a street 
line commonly has between one and six first order neighbors.  

It can be seen from the above discussion that a formal extension of point clustering 
analysis techniques from traditional Euclidean plane to street network space is not complicated 
at the conceptual level. But capturing and measuring geometry and topology properties 
between locations in a street network space might be challenging. Plus, different application 
scenarios call for different zoning frameworks, which might need different specifications of 
coefficient av �  to measure the impact of service point and different distance deterrence 
function F(d�  (P0 , Qv)). Moreover, the distance measurement and topological relationship 
tracking in street network space is computational intensive, as discussed by Okabe and 
Yamada (2001). But it is undoubted that activity locations along street network need to be 
handled differently from those in Euclidean plane when evaluating location clustering. Both 
geometry and topology property of street network space are different from those of Euclidean 
plane. The following section reports two empirical implementations of the above discussed 
extension from Euclidean plane into street network space. The first one is based on distance 
approach while the second one is a zonal approach for auto thefts clustering analysis along 
street network.  

 
EMPIRICLE ANALYSES: CLUSTERING OF AUTO THEFTS ALONG STREETS 

Being a major means for transporting people and goods, vehicles are usually parked or 
stored at places in or along streets in urban area, or at places close to and having good access to 
streets, such as garages or parking lots. Hence, auto thefts are usually showing a pattern 
following the layout of street network (e.g. Copes 1999; Lu 2003; Lu and Thill 2003). 
Although there are discussions in crime literature about the difference between Euclidean 
space and street network space and its implication for understanding crime (e.g. Groff and 
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Alexander 1998) and criminal’s travel behavior (e.g. Rossmo 2000), studies have rarely 
explored the possibility or challenges of adopting a street network framework when analyzing 
the patterns of crime along streets. Lu and Chen (2004) are among the earliest to take a 
distance approach and extend the k-function from Euclidean plane to street network (following 
Okabe and Yamada 2001) when examining the clustering of crime locations.  

This section of the paper is designed to demonstrate two examples of extending point 
clustering analysis from Euclidean plane to street network space. It contains two parts. The 
first part follows Lu and Chen (2004) and shows the difference between the findings from 
applying a distance approach with different space frameworks to the same set of auto theft 
locations in a part of a big city, San Antonio, Texas. The second part reports an extension of 
zoning approach into street network space when analyzing auto theft hot spots in the city of 
Buffalo, New York. The case studies are selected considering data availability and data quality. 
Readers need to keep in mind that these two empirical analyses reported here are for the 
purpose of showing the necessity of accounting for the restrictions and properties of street 
network space when analyzing activities distributed along streets. It is not the main goal of 
these two analyses to accurately evaluate the auto theft clustering in either of the study area. In 
another word, these examples are included here to promote the idea that the analyses of crimes 
along street should be conducted using a street network framework rather than simply 
assuming that they are features distributed in a Euclidean space. It is believe that when related 
extensions of clustering analysis techniques are matured and widely adopted by crime analysis, 
the analysis and reporting of crime clustering pattern will be improved significantly. Crime 
policy and management will surely benefit from this movement. 

 
False alarm when applying planar k-function to the analysis of auto thefts in San Antonio 

The city of San Antonio is covered by six San Antonio Police District (SAPD). To ensure 
that the data set is large enough to show statistical patterns but not too large to burden the 
computer with excessive computation (especially when network K-function is calculated), the 
analyses of this part examine auto thefts reported to the East and Central SAPDs in January, 
February and March of 2002. There were 330 offenses in these two SAPDs during this period. 
The data set was acquired from the Police Department of San Antonio. Whilst the quality of 
geocoding of the police data is worth investigating, it is not a major concern here as the 
purpose is to compare different types of k-functions for crime pattern analysis.  

The planar k-function was calculated through modifying the k-function routine in 
CrimeStat2.0 (Levine, 2002). The network k-function was calculated with SANET, a software 
package developed by Okabe’s group (Okabe and Yamada 2001). Detailed explanation of the 
two k-functions can be found in section 3 of this paper. One hundred times of Monte Carlo 
simulation were conducted at each distance band for each k-function to obtain the expected 
distributions. Figures 2 and 3 report the results of the k-function analyses for auto thefts in the 
East and Central SAPD. Since street network distance is believed to be a better description of 
the distance between theft locations than Euclidean distance, the analyses using network k-
function is supposed to provide an overall better evaluation about the clustering of theft 
locations than those based on planar k-function. Therefore, the performance of planar k-
function can be assessed by comparing to that of network k-function for analyzing crimes 
along streets. A false positive of planar k-function refers to the scenario when a planar k-
function indicates clustering or higher degree of clustering while a network k-function points to 
non-clustering or low degree of clustering. Similarly, when a planar k-function shows non-
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clustering or low degree of clustering but a network k-function designates clustering or high 
degree of clustering, a false negative problem exists for planar k-function. 

It can be seen from figures 2 and 3 that planar k-function is subject to both false positive 
(for East Police District) and false negative (for Central Police District) problem. The planar k-
function shows that auto thefts in East SAPD cluster through out the study distance (up to 
20,000 feet) while network k-function indicates that the clustering of these auto thefts goes up 
to about 16,500 feet and they disperse beyond that. For Central SAPD, while planar k-function 
reports the clustering of auto theft only up to about 5,000 feet distance, network k-function 
reports that the clustering pattern exists clearly for the whole investigated distance (up to 
15,000 feet). It is beyond the scope of this paper to discuss at what situation a false positive 
presents and what situation is favored by a false negative. Nevertheless, the case study shows 
clearly that it is necessary to put the analysis of activity patterns that are distributed along 
streets (e.g. auto thefts) into the framework of street network space. There is a potential danger 
of false conclusion if techniques for Euclidean space analysis are adopted directly (e.g. 
applying planar k-function on a street network distribution analysis). 
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Figure 2. Planar and network k-function analyses of auto thefts in East Police District 
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Planar K: Central  SAPD (Jan. -Mar.)
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Figure 3. Planar and network k-function analyses of auto thefts in Central Police District 
 

 A zoning approach in street network space for the analysis of auto thefts in Buffalo 
The auto theft data for 1998 in the city of Buffalo was obtained from the Buffalo Police 

Department. According to the police records, there were a total of 3,271 auto thefts in Buffalo 
in 1998, out of which 2,284 stolen vehicles were recovered. Using the case ID for each 
reported offense as key filed, a subset of the auto theft cases were matched with corresponding 
vehicle recoveries. Further, after geocoding the theft and recovery locations, a total of 1600 
auto theft and recovery location pairs were matched and mapped. Readers can refer to Lu 
(2003) for details of data processing. This part of analysis demonstrates a street network zoning 
approach to the clustering study of the1600 auto theft locations.  

Couple points need to be addressed before further discussion of the approach and related 
findings. Firstly, this example of auto theft clustering analysis aims at identifying the locations 
of clusters. In another word, different from the previous example and other existing studies that 
stayed at the level of assessing the existence of point clustering (in either street network space 
or grid space) (e.g. Okabe et al. 1995; Okabe and Yamada 2001; Levine 2002; Yamada and 
Thill 2004), this is a local clustering analysis designed to reveal the locality of auto theft 
clusters. Secondly, this approach takes into consideration the distribution restriction of street 
network – locations of activities are all distributed along streets and their patterns are compared 
with expected location distributions restricted to streets as well. Hence, the clusters of auto 
thefts will show a linear pattern rather than the commonly identified circle or other convex 
polygons (e.g. Craglia et al. 2000; Fotheringham and Zhan 1996; DeLima and Lu 2004). Put in 
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another way, the finally identified local clusters of auto thefts are expected to show a pattern of 
linear “hot street”  rather than the commonly adopted round “hot spot” . Considering the 
locating and moving nature of vehicles, a linear clustering pattern might be closer to the reality, 
and is easier for police officers to design and adjust their patrol routes. 

The first challenge is to build a zonal system in the street network using zoning function 
as described in equation 6. Since the city of Buffalo is a relatively big and geometrically 
compact city with matured urban grid-style streets dominating its transportation network, it is 
assumed for this analysis that the connection between locations within the same street segment 
is much smoother than that between locations in different street segments. Hence, each street 
segment is treated as a nature zone. Traffic controls at street intersections are believed to be the 
major deterrence for travels along streets and thus form the boundary for zones in street 
network. While we admit that this is an arbitrary decision that might oversimplify the 
connection situation along streets, we leave it for further investigation to evaluate different 
ways of defining zonal system along streets, since the focus here is to conduct an exploratory 
study to extend zonal approach to street network space for location clustering analysis. After 
cleaning and rebuilding the topology of the street network database, there were a total of 7720 
street segments in the city of Buffalo. The 1600 auto thefts were found to be located 1189 
street segments, among which 895 segments received only one auto theft. Figure 4 and table 1 
reports the distribution of the 1600 auto thefts in the streets of Buffalo.  

 
 

 
Figure 4. Distribution of the 1600 auto thefts in the city of Buffalo 
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Table 1. Distribution of the 1600 auto thefts in streets of Buffalo 

 
 

The next step is to evaluate the concentration of auto thefts in each zone, i.e. to assess the 
clustering of events in each street segment. The observed number of auto thefts in each street 
segment is compared to the expected number of auto thefts in the same zone. Since auto theft is 
a type of rare event and does not happen with equal likelihood everywhere in streets. However, 
due to limited knowledge about the distribution of offense opportunities and acknowledging 
that it is not a major concern for this analysis to describe the opportunity patterns, the 
theoretical distribution of auto thefts is modeled as complete spatial random pattern. The 
probability for a street segment with a length of l o receive n auto thefts can be described as 
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Where L is the total length of the street network, l is the length of the street segment under 
concern, N is the total number of auto thefts in the distribution, and n is the number of auto 
thefts to be expected in l. Pl(n) denotes the probability of observing n auto thefts in a street 
segment with length of l, and it is a Poisson distribution (Getis and Boots 1978; Beseg and 
Newell 1991). 

For this analysis, a street segment i is claimed to have clustered auto thefts in it if the 
probability of observing less than ni auto thefts is 99%, where ni is the number of auto thefts 
observed in i. The street segment is then named “hot street”  for auto theft, corresponding to the 
commonly used term, “hot spot” . Figure 5 shows the analysis results. The highlighted streets 
segments are those zones in the Buffalo street network that received significantly higher 
number of auto thefts than they are theoretically expected to. For crime control and analysis 
purpose, these are the streets that warrant further examination and frequent police patrol.  

Compared to applying Euclidean plane as the distribution space for auto thefts, this 
approach takes into consideration the locating restriction imposed by street network. Hence, it 
can more accurately reflect the spatial distribution of auto thefts and can capture the true 
clustering pattern and locality. Furthermore, for any analyses of auto thefts using Euclidean 
plane, the results would show polygon areas of hot spots. The hot spots might cover offenses 
from more than one street while the true street distance between offenses in the hot spot might 
be far. Plus, one hot spot might cover multiple streets depending on analysis and visualization 
scales, even though their connection is actually much more complicated than appeared in 
Euclidean plane. This might confuse the interpretation of the results and puzzle the police 
when deciding which streets should be patrolled more. A better control of crime is related to 
the ability to allocate resources efficiently based on a good understanding of the connection 
between crime locations and their concentration along streets. 
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Figure 5. Auto theft hot streets identified using zoning approach in street network space 

 
 

CONCLUSION 
This paper is designed to promote the investigation of activity patterns along streets in a 

street network space. Many social and economic activities, especially those in urban area are 
restricted to the spatial layout of urban street framework. It is risky to simple ignore the 
distribution limits imposed by street network to the locations of these activities. For both 
researchers and practitioners, it is important to fully comprehend the patterns of urban 
activities when a street network is used as a distribution background. For the former, a better 
understanding of the patterns in an urban street network can help to build more valid 
hypothesis regarding how the observed location patterns are formed and sustained; for the 
latter, an accurate description of the patterns under investigation should help with resource 
allocation (e.g. for police to allocate manpower) and business planning and operation (e.g. for 
retailers to identify service area, as discussed by Okabe and Okunuki (2001)). 

To extend the spatial statistics techniques from Euclidean plane to street network space, it 
is essential to accommodate two groups of properties – geometry and topology measurement 
and representation. The appropriate description of these properties has significant implication 
for the measurement of spatial separation between locations. Correctly measuring spatial 
separation is essential for the evaluation of clustering among point locations, no matter a 
distance or a zonal approach is adopted. The two empirical examples reported above show how 
the extension of spatial statistics from Euclidean plane to street network can be implemented 
by either distance approach or zoning approach for both global and local statistics. These 
applications are also good examples to demonstrate the necessity for accounting for the 
distribution restriction imposed by street network to certain street activities. However, they are 
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mainly reported here as exploratory approach on the journey of moving-to-street-network-
space for analysis of activity patterns along streets. Major challenges along this journey are 
related but not limited to the computational aspect and topological modeling of the complexity 
of street network. 
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