
 1

WebGD: A Framework for Web-Based GIS/Database Applications

Toshimi Minoura and Hiroshi Tashiro

School of Electrical Engineering and Computer Science
Oregon State University, Corvallis, Oregon, 97331-4602, minoura@cs.orst.edu

Abstract
A typical Internet map-server application allows only retrieval of maps and map-
related data. We have been developing web-based GIS/database (WebGD)
applications that allow users to insert, query, update, and delete geographical features
and the data associated with them from standard Web browsers. The code shared by
these applications is organized as the WebGD framework. We can create the map
interface of a new Web-based GIS/database application by providing configuration
files. We have also built the WebGD application generator (WebGD-Gen) that
automatically produces from the database schema a set of Web scripts that interact
with the map interface and the database. This application generator greatly simplifies
the process of creating a complex Web-based GIS/database application and
significantly reduces the development time and maintenance cost. The WebGD
framework and WebGD-GEN currently support such advanced features as tight
integration of a Web-based map interface with a database, automatic selection of the
spatial reference and map layers for the current region, and automatic generation of
Web forms. The forms generated can be used to insert, search, update, and delete
geographical features and the data associated with them.

1. Introduction

The Internet is emerging as the major venue for sharing information. Dynamic web-based mapping
applications provide customized on-line geographical information systems (GISs), which allow users
without desktop-based GIS software to perform spatial queries and produce maps with standard
Web browsers.

However, a typical web-based GIS application allows only the retrieval of maps and map-related
data. A web server provides information to the client, but the client cannot feeds information back
to the server (Kingston, 1998). This unidirectional flow of information is a major problem with a
current typical map-server application. Furthermore, map information and data stored in a database
are not integrated well. The map coverage is limited to one region. Creating an interactive web
application with a map interface is time-consuming. Commercial map servers and geographical
database management systems are expensive. Analysis tools implemented are limited. This situation
hinders use of Web-based GIS applications in data gathering, analysis, and decision-making.

We have been developing a set of tools that significantly reduces the cost of application
development (Wangmutitakul et al., 2003, Wuttiwat et al., 2003; Sano et al., 2003, Wangmutitakul et
al., 2004). The code shared by interactive Internet GIS applications is organized as the Web-based
GIS/database (WebGD) framework. Most of the complex workings for delivering GIS functions

 2

over the Web are included in this framework. With the WebGD framework, we can create a map
interface through which users can insert, query, and delete geographical features and the data
associated with them only by providing configurations files.

An important feature of a WebGD application is that it tightly integrates spatial data and associated
tabular data, enabling analyses involving location-based data (Sharma 2003,
http://yukon.een.orst.edu/ms_apps/w6grin_cs549/analysis/analyze_collect.htm). These functions are
available to users located at different geographical locations for economical and timely data
management.

We developed several years ago a web-form generator that automatically generates code for
traditional web-forms from the schema of a relational database (Eum et al., 2003). This functionality
was recently extended as the WebGD application generator (WebGD-Gen). The new application
generator can produce the code of an entire WebGD application from the schema of a relational
database and the information on geometry columns. The code generated for the map interface can
insert, query, and delete geographical features (i.e., points, line-strings, and polygons). When a
relational schema and the GIS data for the map layers are available, a non-customized application
can be quickly assembled with the WebGD framework and WebGD-Gen.

The automatic generation of the map interface and Web forms makes possible incremental and
iterative development of complex web-based GIS applications. When a map layer is added or
modified, we only need to create or update the configuration file for that layer and then regenerate
the Web forms for that layer. When a database schema in modified, we can regenerate the entire set
of Web scripts in several minutes. Therefore, even with an incomplete set of map layers and a
database schema, we can generate a working prototype for an initial review. Furthermore, we can fix
most of the software bugs by modifying only the shared code in the WebGD framework or WebGD-
Gen and then by regenerating Web scripts for each application.

WebGD applications use the following open-source software components. PostgreSQL, an object-
relational database, and PostGIS together manage geospatial data. PostGIS is an extension of
PostgreSQL for GIS applications (Ramsey). MapServer (Univ. of Minnesota) generates maps to be
displayed on a web browser by using geospatial data provided by PostGIS. Web pages, including
the one that displays the maps, are generated by server-side scripts written in PHP. The PHP
Mapscript module interacts with MapServe (McKenna, DM Solutions). When a request to insert or
delete a map feature is received by a PHP script, the script directly accesses the PostgreSQL
database, using the PostGIS extension. An application developed runs on a PC without any licensed
software.

We explain the features supported by the WebGD framework in Section 2 and the capabilities of the
WebGD-GEN application generator in Section 3. In Section 4, we describe a brief history of the
development of the WebGD framework and WebGD-GEN. Section 5 concludes this paper.

2. WebGD Applications

The Web interface of one of the WebGD applications, Natural Heritage Information System (NHIS) for
North Carolina, is shown in Figure 1. This application provides a map interface for a copy of the

 3

Biotics 4.0 database maintained by the North Carolina Natural Heritage Program. Biotics 4.0 is a
desktop GIS application built on the database developed by NatureServe. The key elements in this
database are element occurrences (EOs), which are areas of land and/or water in which species are or
were present (NatureServe, 2002). EO records have both spatial and tabular data, and the database
contain approximately 700 relational tables (Fogelsong, 2002). The Biotics Mapper implemented with
ArcView by NatureServe provides a map interface that allows EO representations and associated data
to be created, updated, and deleted (NatureServe, 2003). In our implementation, we can perform these
operations with standard Web browsers. Also, Web forms, approximately 3500 in total, are provided
for all the tables in the database.

Figure 1: Interface of the NHIS Application for North Carolina.

The NHIS application enables bi-directional movement of geospatial data as well as ordinaly data.
Scientists and others with proper authentication can insert, query, and delete geographical features
such as EO polygons, lines, and points, as well as the data associated with them. Queries can be
executed by spatially selecting an area on the map or by using a traditional web form. In addition,
one-meter resolution digital orthographic quadrangles (DOQ), or aerial images, are included as a
layer. When DOQ images are combined with other map layers such as highways, county boundaries,
streams, and streets, locations can be easily pinpointed by taking advantage of features between map
layers (Wuttiwat et al., 2003).

The major operations supported by the map interface of a WebGD application are as follows.

 4

1. To retrieve information on the geographical features in the area of interest, the user can zoom
in/out to that area by using the map navigation tools. If the user zoom-in enough, one-meter
resolution aerial photos are displayed. The user can also go to a new area by selecting an entry in
the Quick View menu.

2. To get information about a geographical feature, the user can select a layer in the legend and
Information in the function menu, and then click the boundary of the feature.

3. Function Insert allows a geographical feature to be added with mouse clicks on the map. Done

need be pressed after all points are entered.

4. Function Search by Area allows the user to retrieve the list of features that are within a

bounding box specified on the map and that satisfy a search condition. The features that satisfy
the search condition are highlighted on the map. Furthermore, the user can select features in the
list by marking the checkboxes associated with them. Then, if the map is refreshed, the selected
features are highlighted.

5. The data administration interface can be activated by clicking on the Database entry in the menu

bar below the banner. A tree icon can be clicked to display a treeview for browsing. The treeview
for Higher Taxonomy is the major one. To access the data of this application, a user must login
with a password as some data on endangered species are confidential. Several WebGD
applications produced with the WebGD framework and WebGD-Gen can be accessed at the
following URLs:

http://yukon.een.orst.edu/ms_apps/nhis_n_carolina/gmap75_main.phtml
http://yukon.een.orst.edu/ms_apps/digir/gmap75_main.phtml
http://yukon.een.orst.edu/ms_apps/nrcs/gmap75_main.phtml
http://yukon.een.orst.edu/ms_apps/w6grin_cs549/gmap75_main.phtml
http://yukon.een.orst.edu/ms_apps/oregon_viewer/gmap75_main.phtml

The first application is Natural Heritage Information System. Although this application can cover the
whole USA or the world, the data are currently available only for North Carolina. The second
application provides a map interface for a local database containing DiGIR records harvested from
DiGIR providers, DiGIR (Distributed Generic Information Retrieval) is an XML-based
communication protocol for a federation of databases managed by natural history museums. The
third application provides a map interface for an application that keeps track of conservation
practices on land parcels.. The fourth one is a Web-based mapping application for a plant germplasm
collection maintained at Western Regional Plant Introduction Station (USDA-ARS). The fifth one
allows the soil information at the location where a mouse click occurs on the map interface to be
retrieved.

One salient feature of the current WebGD framework is dynamic switching of spatial references.
Typically, different geographic regions and localities have preferred map projections in order to
avoid distortions in the maps created (Dana). The framework allows the whole world to be covered
with multiple-levels of maps, e.g., the world map, continent maps, and regional maps. The map
interface then automatically selects the most suitable projection for the region whose portion is
displayed. For example, the world can use the geographical coordinate system, the United States the

 5

Albers equal-area projection, and Oregon the Lambert conformal conic projection. Thus, spatial
analysis can be performed with the most appropriate projection for a particular area. The dynamic
switching of the spatial reference, the map file, the legend, and the quick view menu supported by the
current WebGD framework allows any part of the world to be covered with its own scale and spatial
reference, including regions with one-meter resolution aerial images. This is a very important
feature, especially now that the cost of storing aerial images for the entire US has dropped to
affordable levels (10 tera-bytes needed to store aerial images for the entire US now cost around
$10,000). Furthermore, many states are putting aerial images in the public domain.

3. WebGD-GEN Application Generator

Several tools have been developed to augment the WebGD framework and simplify application
development. The WebGD Web-site generator (WebGD-Gen) can create an entire WebGD
application, including a web-based mapping interface. WebGD-Gen automatically generates a
consistent set of Web scripts from configuration files, which are again automatically generated
from a relational database schema. Since form generation is automatic, the cost of application
development is greatly reduced. For a database such as Biotics that contains approximately 700
tables, programming all the required 3,500 (700 x 5) forms manually can be very costly, even
infeasible.

WebGD-Gen is implemented as a collection of templates. Each template, combined with a
corresponding configuration file, generates one of the following six types of Web scripts: search,
select, edit, information, action, and treeview scripts. Templates and configuration files are written
in PHP. The Web scripts generated by them are also in PHP. The generated scripts are executed on
a Web sever by a PHP interpreter. Each script, except for an action script, creates a Web form that
is displayed on a client computer by a Web browser. Figure 2 illustrates the interactions among the
Web scripts and forms.

Furthermore, WebGD-Gen can automatically generate the statements for inserting, searching, and
deleting geographical features if the following lines, e.g., are added to a configuration file:

$web_gd = ‘MULTIPOLYGON’; // type of geographical features
$layer_name = ’grp_eo_py’; // layer group in legend
$geometry_column = ‘the_geom’; // geometry column containing shapes
$gid_column = ‘gid’; // geographical feature IDs
$db_table_srid = 32119; // epsg spatial reference

The forms generated for geographical features can perform the following additional functions
compared to those for ordinary database tables

1. A search form can be activated from a map interface. In this case, the extent of a search box

specified on the map is passed as additional search parameters.

2. A select form includes additional JavaScript code for highlighting geographical features

retrieved or selected by the user.

 6

3. An edit form can insert a record for a geographical feature, after transforming the coordinate
values from the spatial reference used by the current map interface to the one used by the
geometry column for the record.

<?php
// File Name: students_search.phtml
// This script accepts parameters for a Student search.
// Search parameters are sent to students_list.phtml if no errors are found.
// Output and input Parameters:
// not_first_time -- hidden, true when called with params
// browse_field -- search for a record to return its ID
// $student_id --
// $first_name --
// $last_name --
// $age --
// $gender --
// $department_id --
// Output parameters are recycled as input parameters
// when errors are found with output parameters.
// If errors are found, $errosFound need be set true, and
// an error message need be set in $xxxx__error
// where xxx is a search filed name.

 include (ʺ../common.phtmlʺ);

…
…
...

<?php
 // Enable output buffering and start session
 ob_start(); // need be executed
 session_start(); // before any output is produced
?>
<?php
// File Name: students_select.phtml
// Given search parameters, queries table students, displays
// the list of matching rows, allows file students_edit.phtml opened
// for a selected row. Rows can be deleted also.

// Called by:
// eosrc_ln_search.phtml and
// rubberStop() in rubber.js activated by Information for the EO layer
//
// Input Parameters:
// max_num_rows -- max number of rows displayed in the selection list
// auto_redirect -- redirect to edit form when only one record found
// browse_filed -- opener.document.getElementById($browse_filed)

 $record_array = array();

…
…
...

Search Form

Select Form

Search Script

Select Script

Client Sever

Database

(1) search request

(2)

(3) search parameters

(4) error (5) checked search parameters

(6) query

(7) retrieved records

(8) records

<?php

// File Name: students_info.phtml
//
// Input Parameters:
// student_id for displaying information on Student
 include (ʺ../common.phtmlʺ);

// Retrieve primary key
 $student_id = strip(get_param(ʺstudent_idʺ));
 $sWhere = ʺstudent_id = ʺ . tosql($student_id, ʺTextʺ);
 $sSQL = ʺselect * from students where ʺ . $sWhere;
 $db->query($sSQL);
 // if ($db->num_rows() > 0) {
 // echo ʺ ok ʺ;
 // }
 if ($db->num_rows() > 1) {
 die(ʺMore than one record returned for student_id = $student_id.ʺ);
 }
 $db->next_record();
 $_title =ʺStudentsʺ;

…
…
...

Info Script

<?php

// File Name: students_edit.phtml
// This form is used to insert and edit a Student record.
// The form params are passed to the edit script itself,
// and if not errors are found, they are redirected to the action script.

// Input Parameters:
// not_first_time -- hidden, true when called with params
// cmd -- constant, Insert or Update
// showOnMap - [true|false] enables/disables interaction with map
// $student_id --
// $first_name --
// $last_name --
// $age --
// $gender –

…
…
...

Edit Script

<?php
// File Name: students_action.phtml
// students_select.phtml activates this script for updating and inserting
// a Student record and deleteing a set of Student records.
// students_edit.phtml do so for inserting, updating, and deleting
// a students record.
//
// Input Parameters:
// cmd -- constant Insert, Update, Delete, or GroupDelete
// deleteIDs -- list of user_type IDs as U002,U004,U0010 for group delete
// $student_id --
// $first_name --
// $last_name --
// $age --
// $gender --
//
//
 include (ʺ../common.phtmlʺ);

 $cmd = get_param(ʺcmdʺ);

…
…
...

Action Script

Info Form

Edit Form

(9) record

(11) IDs for delete

(12) “Insert”

(10) record

(13) query

(14) record data

(15) record data

(16) “Insert”

(17) insert / update / delete

(18) error

(19) insert / update / delete

(20) query

(21) record data

(22) record data

(23) insert / update / delete

Figure 2: Interactions among Web Scripts and Forms.

 7

The forms related are automatically linked each other. Figure 3 shows, as an example, the edit
form for a Student table. From this edit form, the user can open the forms for the department and
courses related to the student. The information needed to create the links are extracted from the
primary-key/foreign-key relationships among the tables in the database.

Figure 3: Student Edit Form.

In order to generate the Student edit form shown in Figure 3, the following entry is provided in
the configuration file.

$edit_fields=array(
 array("column"=>"student_id", "label"=>"Student Id",
 "type"=>"numeric", "maxlen"=>"40", "size"=>"40"),

array("column"=>"first_name", "label"=>"First Name",

 8

 "type"=>"text", "maxlen"=>"40", "size"=>"40"),
array("column"=>"last_name", "label"=>"Last Name",
 "type"=>"text", "maxlen"=>"40", "size"=>"40"),
array("column"=>"age", "label"=>"Age",
 "type"=>"text", "maxlen"=>"40", "size"=>"40"),
array("column"=>"gender", "label"=>"Gender",
 "type"=>"text", "maxlen"=>"40", "size"=>"40"),
array("column"=>"department_id", "label"=>"Department ID",
 "type"=>"to_one", "linked_table"=>"departments",
 "maxlen"=>"40", "size"=>"40"),
array("label"=>"Courses Taken", "type"=>"to_many",
 "linked_table"=>"courses", "maxlen"=>"40",
 "size"=>"40"),

 array("column"=>"other_info", "label"=>"Other Information",
 "type"=>"textarea", "rows"=>"4", "cols"=>"32"),
);

Each element in array $edit_fields represents a field in an edit form, with options
column, label, table, maxlen, size, and type. Option type can be numeric, text,
time, date, email, phone, textarea, to_one, or to_many:

 textarea: The input is a string displayed in a text area.

 to_one: A field of type to_one allows a user to view or modify the record related to the

current record via a one-to-one or many-to-one relationship type. In our example, column
department_id in table students is specified as to_one. When the View buttion is
clicked, the edit form showing the record of the student’s department is displayed.
Furthermore, a user can search and select a new department record to be linked. Option
linked_table designates the name of the table storing the associated record. Option
child_column indicates the column for linking in the associated table. If this option is
omitted, the name of the column for linking is identical to that of the foreign key column in
the current record.

 to_many: The purpose of this type is to list the records related to the current record via a

one-to-many or many-to-many relationship type. In our example, the field labeled Courses
Taken is specified to be to_many. When the Show button is clicked, all the courses taken
by the student are displayed in the select form for courses. This type needs options
linked_table, parent_column, and child_column. Option linked_table
and option child_column are similar to those for type to_one. However, the
child_column can be omitted, when the name of the foreign key column of the
associated table is identical to that of the primary key column of the current record. Option
parent_column indicates the foreign key column in the current table. If this option is
omitted, the foreign key column is the primary key column of the current table.

Furthermore, the information needed to display each map layer and to activate the web scripts
when insert and search requests are issued with the map interface can be defined in a map-layer

 9

configuration file. The following definition is for the map layer of element occurrence data to be
collected by field researchers within North Carolina:

'grp_eo_record_added' => array(
 'geom_type' => 'polygon',
 'table' => 'eo_record_added',
 'layer_selectable' => true,
 'gid_column' => 'eo_record_added_id',
 'geom_col' => 'the_geom',
 'legend_label' => 'EO Records Added',
 'search_script' =>
'forms/data_submission/eo_record_added_search.phtml',
 'select_script' =>
'forms/data_submission/eo_record_added_select.phtml',
 'edit_script' =>
'forms/data_submission/eo_record_added_edit.phtml',
 'normal_layer' => 'eo_record_added',
 'searched_layer' => 'eo_record_added_searched',
 'checked_layer' => 'eo_record_added_checked',
 'selected_layer' => 'eo_record_added_selected',
 'img_src' => 'images/eo_record_added.png',
 'img_width' => 21,
 'img_height' => 20,
 'onclick' => 'activate_layer("grp_eo_record_added")',
 'data_srid' => 32119
),

4. WebGD Development History

The WebGD framwork and WebGD-GEN were developed incrementally and iteratively during
the last four years. We first implemented in 2000 an application that allowed point features to be
inserted on a map by using ASP with ArcIMS and ArcSDE. In 2001, we re-implemented this
application with ASP.NET, as ASP.NET provides Web controls, which are better building
blocks for Web pages. Based on this application, the first version of WebGD framework was
created in 2002 in order to support multiple applications (Wangmutitakul et al., 2004).

In early 2003, we re-implemented an application called Motels Oregon with MapServer,
PostGIS, and PostgreSQL (Sano et al., 2003). This version on Linux was more reliable and faster
than the old one, as well as being built with free software. While implementing the next
MapServer application, which was a germplasm resource management system (GEM-GIS), we
created the first version of WebGD framework for MapServer. This framework was then
enhanced so that it can handle polygon features as well as point features.

The two major enhancements made to the WebGD framework in 2004 were dynamic switching
of spatial references for different regions and automatic generation of Web forms that can be
used to insert, query, and delete geographical features. Compared to an application that simply

 10

displays geographical features as points on a map, the current WebGD framework is roughly 20
times more complex in terms of the time we spent implementing the required features.

5. Conclusions and Future Work

We have developed the WebGD framework and the WebGD-GEN application generator for
rapid development of Web-based GIS/database applications.

1. Geographical features, such as the locations of habitats of plants and animals, road-work

sites, and waterlines, can be inserted, queried, and deleted from the map interface
displayed on a standard Web browser.

2. An application can be created without any programming. The look and behavior of the

map interface can be customized with configuration files, and Web scripts for data access
can be automatically generated from the description of a database schema. This feature not
only reduces significantly the development cost of a Web-based GIS application, but it
also makes incremental and iterative development of the software easier.

3. Dynamic switching of spatial references allows an application to cover different regions

with different map files, projections, map legends, and quick-view lists. This is an
important feature needed for an application that covers the entire USA or the world.

The cost of running our applications is extremely low. We could put copies of such large databases as
Biotics, SSURGO2 soil data, and a part of National Germplasm Resource Information System on a
$800 PC. The software tools we use, such as the University of Minnesota MapServer, PostgreSQL
DBMS, PostGIS, Apache, and PHP are all available for free. The GIS data used, such as those from
USGS, TIGER/LINE, and Digital Chart of the World (DCW), are also in the public domain.
Automatic code generation of a WebGD application will save a great deal of effort in the
development of a spatial decision-support system. Although some manual customization is required,
the time needed for customization can be lowered to weeks or months compared to the years required
to build a spatial decision-support system from scratch.

References

 Dana, Peter H. Map Projection Overview,
http://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj_f.html.

 DM Solutions Goup Inc. PHP MapScript, http://www.maptools.org.

 Kingston, R. (October 1998). Web-based GIS for public participation decision making, In
Procs of NCGIA PPGIS Meeting, Santa Barbara, California. Retrieved May 2003 from
http://www.ncgia.ucsb.edu/varenius/ppgis/papers/kingston/kingston.html.

 Eum, D. and Minoura, T. (June 2003). Web-based database application generator. IEICE
Transactions on Information and Systems, Vol. E86-D, No. 6.

 Fogelsong, C. (December 2002). Biotics 4.0 data model version 1.0. Retrieved January 5,
2004, from http://whiteoak.natureserve.org/hdms/HDMS-DataModel.shtml.

 11

 McKenna, Jeff. Mapserver PHP/MapScript Class Reference - Versions 3.6, 4.0 & 4.2, DM
Solutions Group Inc.

 NatureServe (February 2002). Element Occurrence Data Standard. Retrieved January 4,
2004, from http://whiteoak.natureserve.org/eodraft/all.pdf.

 NatureServe (December 2003). Biotics 4.0 Getting Started Guide. Retrieved January 5, 2004,
from http://whiteoak.natureserve.org/hdms/biotics-learn-more.shtml (now obsolete).

 Sano, J., Wanalertlak, N., Maki, A., & Minoura, T. (July 2003). Benefits of web-based
GIS/database applications. In Prosc. of 2nd Annual Public Participation GIS Conference,
Portland, Oregon.

 USDA-ARS. Western Regional Plant Introduction Station, USDA - Agricultural Research
Service, Pullman, Washington, http://www.ars-grin.gov/ars/PacWest/Pullman/.

 Ramsey, Paul. PostGIS Manual, Refractions Research Inc.

 University of Minnesota. MapServer, http://mapserver.gis.umn.edu, 2003.

 Sharma, A. (December 2003). Web-based analysis module for a germplasm collection.
Master of Science report, School of Electrical Engineering and Computer Science, Oregon
State University.

 Wangmutitakul, P., Li, L., and Minoura, T. User Participatory Web-Based GIS/Database
Application. In. Proc. of Geotec Event Conference, March 2003.

 Wangmutitakul, Paphun, et al. WebGD: Framework for Web-based GIS/database Applications,
Journal of Object Technology 3, 4, 209-225, 2004.

 Wuttiwat, T., Minoura, T., and Steiner, J. (May 2003). Using Digital Orthographic Aerial
Images as User Interfaces. In Proc. of ASPRS Annual Conference, Anchorage, Alaska.

