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ABSTRACT: This paper explores the use of graphics processing units (GPUs) for combined 
numerical analysis and visualization. Using an implementation of the O’Callaghan and Mark 
(1984) drainage accumulation algorithm, it explores the advantages and challenges that this 
environment brings to real-time, frame-by-frame production of spatial modeling products and 
their visualization. Modern GPUs employ massively-parallel processing architectures primarily 
configured for 3D rendering applications. However, the same environments also support general 
purpose numeric processing relevant to large scale simulations using languages like CUDA or 
OpenCL. Unfortunately, these languages do not interact directly with the ‘rendering pipeline,’ the 
GPU hardware responsible for transforming vertex, shape, patch, and fragment data into rendered 
pixels. In contrast, the most popular rendering APIs, OpenGL and Direct3D, have recently 
incorporated optional ‘compute shader’ processing stages that share the same data structures, 
memory models, and overall syntax used by the existing vertex, tessellation, geometry, and 
fragment shaders that feed the rendering pipeline. This addition allows developers to insert one or 
more purely numerical processing stages between graphics stages within the same API 
framework. Execution times for the implementation on a GPU with over 2,000 cores are analyzed 
to determine which operations are conducive to concurrent execution on the GPU as well as those 
processes and data access operations that lead to processing slowdowns. 

KEYWORDS: Drainage basin models, concurrent, parallel, OpenGL 

Introduction 
This paper explores the use of graphics processing unit (GPU) computing to both analyze 
and display spatial data seamlessly in a unified programming environment. Although best 
known for their usage as graphics rendering engines, GPUs are also used extensively as 
parallel computing platforms in modelling and in other numeric applications, especially 
for problems that partition easily into independently-analyzable clusters. As GIS 
developers begin to implement concurrent algorithms in these environments, this paper 
proposes techniques for combining analytical and rendering operations conducive to real-
time surface analysis and display (Meza, 2015; Carr, 2015). It implements the 
O’Callaghan and Mark (1984) drainage accumulation procedures as an example of how 
such a combination could occur. 

The evolution of GPU architectures and rendering libraries is characterized by increasing 
programmatic access to internal functionality. As manufacturers continue to expose 
underlying chip resources to developers, new opportunities continually arise to exploit 
them. In 2010, OpenGL version 4.0 exposed access to GPU tessellation units that 
accelerate 3D rendering of polynomial surfaces (Khronos Group, 2016). Polynomial 
surface models have a long history of exploitation in GIS, including their use as DEMs 
going back to the 1960s (Maxwell and Turpin, 1968). While such early applications were 
limited by the computing power and storage capacities of the time, current tessellation 
shaders enable fast surface evaluation supportive of further numerical analysis. This 
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paper will show how one such analytical process, a drainage accumulation model, can be 
constructed and displayed in a hybrid rendering pass. 

Method 
An overview of GPU programming. Unlike their ‘black box’ predecessors, modern 
graphics application programming interfaces (APIs) expose relatively low-level 
programmable elements of GPU architectures. Two such APIs, OpenGL and Direct3D, 
provide interfaces for client-side (CPU) and server-side (GPU) processing. Client-side 
operations are largely responsible for configuring the rendering environment, building 
shader programs that launch from the client and run on the server, and providing channels 
for copying data between the client and server. OpenGL server-side programs are written 
in a set of GPU programing languages referred to as GLSL while Direct3D uses HLSL. A 
program written in GLSL or HLSL targeting a particular stage of the programmable 
pipeline is referred to as a shader. The client compiles and links a set of shaders at 
runtime to form a shader program (Figure 1).  

 
Figure 1. Client/Server relationships and responsibilities.  

For the rest of this paper, the discussion of GPU programing will be limited to OpenGL 
and GLSL, the API and shader language set used to create the products discussed here. 
Although OpenGL client-side API methods are accessible from many programming 
languages; C++ is somewhat more convenient than others for desktop development 
environments and is the client-side language used for this project. 

The server-side OpenGL rendering pipeline is summarized in Figure 2. After copying 
vertex data to video RAM, the client issues OpenGL commands to specify the desired 
rendering primitive output (lines, triangles, patches, etc.) and launch pipeline processing 
on the server. It is very important to note that vertex rendering is 1) performed in parallel 
with, but independently of and asynchronously with respect to all other vertices and 2) 
that asynchronous parallel processing is the norm in OpenGL to ensure high graphics 
throughput. The pipeline is composed of mandatory and optional programmable stages, 
as well as fixed mandatory stages. During a pass of the rendering pipeline, the vertex 
shader code first operates on vertex data that has been copied, or ‘bound’ to server RAM 
from the client. Each vertex is processed as an ‘instance’ of the vertex shader, hosted on 
an individual processor (virtual or real, depending on the number of available processors 
with respect to the number of vertices). The vertex shader code set is shared by all 
vertices. Generally, but not always, a vertex shader instance performs coordinate 
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transformations on its data, possibly including perspective projection. Next, if tessellation 
is desired, an instance of the tessellation control shader (TCS) combines a user-defined 
set of vertices from the vertex shader output, assembles them into a patch, and performs 
user-specified operations such as determining the positions of control points 
(coefficients) for a polynomial surface through the patch. An instance of the subsequent 
tessellation evaluation stage (TES) interpolates the surface created in the TCS at user-
specified locations (through the use of tessellation level parameters, defined below) and 
outputs 1 vertex for each instance at a single evaluation site. An instance of the optional 
following geometry shader can assemble outputs of TES instances into primitives 
(triangles, lines, etc.) and create yet more new vertices or structure the TES output into 
useful topological forms (e.g. triangles). At this point, any available output data is passed 
to several mandatory, non-programmable stages for final assembly into vector primitives, 
projection to screen coordinates, clipping to the viewport, and rasterization. Finally, an 
instance of the programmable, mandatory fragment stage is called for each image 
fragment output by the rasterizer. A fragment shader is usually responsible for coloring 
the fragment but can also perform other useful programmatic operations. Fragments map 
to pixels in the on-screen framebuffer or to textures (2D grids of fixed image storage 
types) attached to on- or off-screen framebuffer objects for deferred rendering. 

 

Figure 2. The OpenGL rendering pipeline. Mandatory programmable stages are drawn in green, optional 
stages in orange, and non-programmable stages in gray.  

Besides providing mechanisms for rendering operations, versions of OpenGL from 4.3 
onward also permit access to GPU computing operations that are independent of and 
operate outside of the vertex processing pipeline. These so-called compute shaders use 
the same data types and channels as graphics shaders but share characteristics of 
‘numeric’ GPU programing languages such as OpenCL and CUDA. The addition of 
compute shaders to OpenGL allows a server-side program to combine modeling and 
rendering elements within the same framework as a series of GPU ‘passes,’ where each 
pass begins as a request from the client to initiate data processing (whether through the 
rendering pipeline or with a standalone compute stage). Importantly, the developer need 
only understand and link his or her client code with 1 API. The project described in this 
paper uses multiple rendering and compute passes to create a drainage accumulation 
model on a frame-by-frame basis, built on real-time tessellations of a cubic polynomial 
surface. All of the stages of the rendering pipeline and compute shaders can both read and 
write ‘global’ data, in the form of textures, shader storage buffer objects (SSBOs—lists 
of arbitrarily structured data) and other formats. These global data channels are also 
visible to the client (CPU), affording a communication mechanism between server 
processors and generally between the server and client. 
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Characteristics of drainage network models. This project builds local polynomial 
surfaces from gridded elevation samples while maintaining visual continuity along edges 
and at vertices. The resulting surfaces can be evaluated at any required sampling density 
to create a mesh of patch-local triangulated irregular networks (TINs) that form the 
connected source and drain pairs for the drainage model. For a surface described by a 
mesh of 3-dimensional elevation samples, a drainage direction map determines the path 
of steepest descent from each point in the mesh to a connected neighbor. The mesh itself 
may be arranged in a regular grid or TIN format. A TIN mesh is frequently constructed 
from a Delaunay triangulation of an irregularly distributed set of elevation samples. 
Meshes constructed on grids typically connect each interior sample to its 8 surrounding 
samples. In both cases, the drainage direction can be specified as the steepest downhill 
path from an uphill cell (source) to a connected downhill cell (drain).  

Any drainage basin modeling techniques that operates on grid cell elevation samples with 
constant horizontal sampling density is prone to modeling artifacts sometimes referred to 
as interior or false pits (O’Callaghan and Mark, 1984). TINs largely avoid generating 
internal pits by allowing the data developer (or automated procedures) to select samples 
for inclusion at topologically-significant locations: at peaks, pits, and passes, and along 
ridges, course lines, and slope breaks. A judicious selection prevents the occurrence of 
internal pits in subsequent analyses. 

For the sake of simplicity in this exploratory project, the Bézier patch-local control grid is 
drawn from grid cell elevation data (Piegl and Tiller, 1997, pp. 9-34.). This structure 
maps intuitively to the multidimensional processor grid layouts promoted by OpenGL 
and is especially convenient for connecting drainage sources and drains between adjacent 
patches. However, even though the gridded samples serve as coefficients of cubic 
polynomial patches, the grid itself remains prone to the creation of interior pits. To 
reduce their number, existing pits within the control grid can be modified by several 
techniques including weighted smoothing or projection to the plane of 3 of their 8 
surrounding neighbors. Although such techniques remove most interior pits, some may 
remain after multiple passes. O’Callaghan and Mark (1984) provide a ‘flooding’ 
procedure to replace all elevations less than the lowest point on the edge of the basin with 
its value and use that location as a ‘pour point.’ This creates a drainage path between the 
basin containing an interior pit and its immediate downhill neighboring basin (see Mower 
(1994) for a parallel implementation of the basin flooding procedure). Rather than 
implement this process here, future work will avoid the problem by switching to TIN 
models (see Future Work below).  

Building PN triangles. This project uses a methodology known as PN (point normal) 
triangles to automatically generate patch-local TINs through the evaluation of local 
Bézier polynomial surface patches within a triangular mesh (Vlachos et al., 2001). PN 
triangles provide a useful framework for constructing drainage networks since: 

• they are formed from continuous surfaces that suppress local noise; 
• they can be constructed efficiently with tessellation shaders on modern GPUs; and 
• they are adaptable to multiple resolution and scaling within a single frame. 
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The surface patch mesh is generated from a regular triangular tessellation of a fixed 
resolution grid cell elevation model in a 1-time preprocessing step (Figure 3). Each 
elevation sample is shared by 6 PN triangles. An M x N sample grid produces  
2(M -1)(N-1) PN triangles. 

 

Figure 3. A triangular tessellation of a fixed resolution grid cell DEM is the framework for a PN triangle 
mesh. In later processing stages, a distinction is made between lower and upper triangles with respect to 
barycentric edge and vertex coordinate matching between adjacent triangles. Each interior mesh vertex 
(such as the one specified by the red dot) is shared by 6 PN triangle patches.  

Each instance of the TCS is responsible for creating control points for a single patch-local 
cubic Bézier polynomial surface at the patch’s corners (here, a corner refers to one of the 
3 vertices defining a PN triangle), at interpolated vertices along its edges, and at its 
center. To establish a curved surface within a patch, and to assure that patch edges 
maintain visual continuity with respect to adjacent patches, the coefficients (control 
points) for the polynomial depend upon the establishment of normals at the corners 
across the mesh (Figure 4). These ‘point normals’ are constructed in a 1-time client 
preprocessing operation by summing the surface normals of the patches sharing the 
vertex, and then normalizing the summed vector (by dividing each of its 3 components by 
its length).  

 

Figure 4. A point normal is constructed at the central vertex as a normalized vector sum of its vertex-
adjacent face normals. This operation is performed for all mesh-internal vertices; others require edge cases. 

The point normals carry curvature information between patches by determining the world 
positions of interpolated control points along the edges and at the center of each PN 
triangle within the mesh. Following Vlachos et al. (2001), 2 control points are established 
along each edge at 1/3 and 2/3 the distance from one of the corners (Figure 5). An 
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additional control point is established at the PN triangle center (although this project uses 
a regular right triangle tessellation for simplicity, PN triangles may be irregular). It is 
convenient to use barycentric coordinates to refer to the control point positions (Bradley 
2007). 

 

Figure 5. A PN triangle including edge and center vertices with their barycentric coordinates. The vertices 
at (0,0,1), (0,1,0), and (1,0,0) are PN triangle corners and correspond to mesh samples. Other vertices along 
the edges and at the center are interpolated with respect to the point normals (red arrows) at the corners. 

The world coordinates of the samples at the corners are retained without interpolation or 
projection for their corresponding control points. The control points along the edges and 
at the center are calculated in 2 stages. First, a linear interpolation is performed between 
the bracketing corners. Next, each control point is projected onto the plane determined by 
the closest corner and its point normal. See Vlachos et al. (2001, section 3.1) for details.  

The TCS is also responsible for determining the number and placement of evaluation 
sites for the tessellation evaluation shader (TES) stage. As its name suggests, an instance 
of the TES is called for each evaluation site to find its world coordinates with respect to 
the polynomial surface defined by the patch’s control points. For this project, evaluation 
sites are established at 8 equally spaced subdivisions along each PN triangle edge (related 
to the user-defined ‘outer tessellation level’ parameter) and at 12 interior points, defining 
2 nested interior triangles (derived from the ‘inner tessellation level’ value). Each 
instance of the TES outputs 1 vertex. Figure 6 shows the tessellation sites for 2 adjacent 
PN triangle patches. Although they share the same topology, the coordinate system for 
the PN triangle rendered in blue (the ‘upper’ triangle) is rotated 90° counterclockwise 
with respect to the lower triangle (rendered in green). This pattern is consistently 
enforced by the TCS through the user-selected vertex winding order parameter. The 
tessellation sites define the basis of the drainage network for each patch. Since patches 
share a common topology, patch drainage inputs and outputs can be connected along 
edge and at corner adjacencies. A 1-time client-side operation defines a mapping between 
upper and lower triangle edge and corner vertices. Future versions of this program will 
allow varying tessellation levels between adjacent patches (see Future Work below). For 
now, tessellation levels are held constant for all patches.  
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Figure 6. The PN triangle mesh is composed of upper (blue shaded) and lower (green shaded) triangles, 
each tessellated with the same topology (here, outer tessellation level = 8, inner tessellation level = 5).  

Creating a drainage network. The creation of a drainage direction map requires that 
each tessellation site know its connected neighbors. Since this project keeps tessellation 
level parameters constant for all patches, determining the tessellation pattern of 1 defines 
them all. To establish the pattern and create a connected vertex list, an initial rendering 
pass is performed over a single patch (Figure 7).  

 

Figure 7. Programmable pipeline for creating a connected tessellation vertex list common to all patches.  

Each of 3 vertex shader (VS) instances takes a single 3D sample position (in world 
coordinates) and point normal (as a normalized vector) and passes them to the TCS. A 
single TCS instance in turn assembles the 3 input vertices and their point normals to 
calculate a set of 3D patch coefficients and supplies it to the following TES. A TES 
instance for each tessellation site outputs an index (used as an ID value later) and a 
barycentric triple to a shader storage buffer object representing its site’s location in the 
given PN triangle patch. The TES also outputs a vertex to the following geometry shader 
(GS). One GS instance for each tessellated triangle assembles 3 vertices from TES 
instances to create a triangle with vertices represented by barycentric coordinate triples. 
Each GS instance writes the IDs of its triangle and its component vertices to another 
SSBO. Although OpenGL requires a fragment shader stage in every rendering pass, the 
remaining products from the pipeline are ignored on this pass. After the pass has 
completed, a client-side operation builds the connected vertex table by finding all 
triangles sharing a given vertex and noting the other 2 vertices in each matching triangle 
(Figure 8). 
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Figure 8. Connected vertices for tessellation sites. The numbers appearing next to the sites are indices that 
are valid for all patches. The connected vertex table is shown here as an abbreviated list.  

Following the 1-time connected vertex pass, the program enters an event handling loop 
that responds to changes in user viewing parameters, including the initial viewing 
conditions on startup. Each such event initiates the following operations: 

1. Render all patches (rendering pipeline):  

1.1. Write evaluated tessellation vertices to the drainage vertex list (DVL) SSBO, 
ordered by patch and tessellation site index 

2. Create the drainage network (standalone compute stage): 

2.1. Create the drainage direction map for all tessellated vertices in the DVL 

2.1.1. Find drainage directions for non-edge, non-corner (patch-internal) vertices 

2.1.2. Find drainage directions at patch corners 

2.1.3. Find drainage directions along patch edges 

2.2. Compute drainage accumulation values for all evaluated vertices 

Step 1 is accomplished through a single pass of the rendering pipeline over all patches in 
the PN triangle mesh. The main product of the pass is the creation of a SSBO containing 
all tessellated vertices in all patches (the ‘drainage vertex list’ or DVL), sorted by patch 
and tessellation site index. DVL vertices have been evaluated to the polynomial surface 
of their containing patch and are written out in world coordinates (UTM plus elevation in 
this case). Note that for the version of the program discussed here, tessellation levels are 
held constant for all patches and are unaffected by viewing parameters. Subsequent 
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versions, however, will allow varying resolution through the use of multiple tessellation 
levels (see Future Work below).  

A compute shading pass (step 2.1) then determines vertex drainage mapping for each 
tessellated vertex in each patch, with each vertex represented by its own compute shader 
instance. Each instance examines its vertex’s barycentric coordinate values to determine 
if it is positioned within the patch, along an edge, or at a corner. Starting with the internal 
case (step 2.1.1), recalling that each DVL vertex is associated with a barycentric triple 
and thus a set of known connected vertices, an instance accesses each of the internal 
vertex’s connected neighbors in the SSBO and then records the steepest downhill path 
among them. Each patch can establish drainage for its interior vertices independently 
from all other patches.  

Vertices at PN triangle corners can drain to connected vertices in any of the 6 sharing 
patches. Figure 9 shows the possible drainage paths for a mesh-internal corner vertex. 
Since the barycentric coordinates of upper and lower triangles are rotated 90° with 
respect to one another, a mapping function determines the barycentric coordinate triple 
for v with respect to each of the 6 sharing PN triangles. 

 

Figure 9. A mesh vertex v is shared by 6 PN triangles (A). B shows how v is connected to edge and internal 
vertices in each of the sharing patches 0 through 5. C details those connections. 

Finding the drainage direction for a corner vertex amounts to finding the steepest of all 
possible downhill paths to connected vertices in each of the 6 sharing patches. Since the 
patches share the same tessellated vertex topology, the search reduces to finding the 
world coordinate values for the connected vertices in each patch in turn and selecting the 
vertex connected by the overall steepest downhill path.  

Finally, an edge vertex in an interior patch can drain to another edge vertex or to an 
interior vertex in either of the sharing patches. Every edge vertex is shared by a lower and 
upper triangle but the barycentric coordinate systems for each is rotated 90° with respect 
to the other. A mapping function like that for corner vertices determines matching 
vertices in the sharing triangles and identifies the connected vertices for each. Finding the 
drainage direction for an edge vertex thus becomes the search for the steepest downhill 
patch to a connected vertex in the 2 sharing patches. Figure 10 shows the complete 
drainage direction map for a rendered sample DEM containing 2 patches. 
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Figure 10. Drainage directions for tessellated evaluation sites in 2 patches. Elevations at sites are in meters. 

Drainage accumulation modeling is an iterative process that requires information passing 
between patches. As in the drainage direction pass, each surface patch is processed 
separately from other patches on a dedicated processor workgroup. Each processor in the 
workgroup represents a single vertex. Because OpenGL does not provide a mechanism 
for workgroups to synchronize with one another during a compute shader pass, this 
project runs the drainage accumulation model as a series of compute shader passes on the 
GPU with intermediate data copying steps on the CPU (step 2.2). Before the first pass, 
the starting reserve and accumulation values for each vertex in all patches are set to 1 and 
0 respectively, On each computing pass, any vertex that drains to another vertex in its 
own patch increments its downhill neighbor’s reserve by its own reserve value and 
decrements its own reserve by the same amount (Figure 11). All cases in which a vertex 
instance modifies any value associated with another instance is performed by an atomic 
data operation that guarantees to complete without interruption before any other 
concurrent operator can access the data. The vertex instance then increments its own 
accumulation value by the reserve it sent downhill. Processing continues asynchronously 
at all vertices within a workgroup until no non-pit vertex has a reserve greater than 0. 
Even if a given vertex has a reserve equal to 0, it idles in case a vertex upstream has a 
reserve that has not yet made its way downhill to its position. This is necessary to assure 
the correct operation of the procedure on subsequent passes where patch-local ridges, but 
no other vertices, have reserves initialized to non-zero values. 
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Figure 11. State of reserve (red), accumulation (blue), and basin label (brown) values after each 
accumulation modeling pass (A through D) for a portion of a drainage network.  

After the completion of a pass, control returns to the client. Local pits associated with 
corresponding ‘ridge’ vertices (vertices with no patch-internal uphill neighbor) in 
adjacent downhill patches copy their reserve values to their counterparts and reset their 
own reserve values to 0 (Figure 12). On each subsequent pass, non-zero reserves at the 
ridge vertices propagate through the patch, incrementing accumulation values at each 
passing vertex. Accumulation processing ends when all reserves in the system have 
drained to global pits (patch internal pits or pits on the edges of the PN triangle mesh).  

 

Figure 12. Local pit vertices a, b, and c in patch A have corresponding ridge vertices in adjacent patch B. 
At the end of a pass, a client process copies reserves at a, b, and c to their counterparts in B. On the 
subsequent server pass, ridge values in B drain to their local pits, adding vertex accumulation values (in 
red) along the way. Although vertices d, e, and f are ridges in B, they have no corresponding pits in A and 
so contribute no more accumulation within B. Vertex g drains along the edge to another vertex in A and 
therefore does not contribute to accumulations in B. 
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On all passes, the total reserve values in a basin are constant. At the end of processing, 
the accumulation value at a pit equals its basin’s total reserve. Basin labeling can be 
performed at the same time as drainage accumulation without requiring additional 
iterations (refer to Figure 11). Pits are initialized to a basin ID equivalent to their unique 
vertex identifier and all other vertices are initialized to null. Whenever a vertex writes its 
reserve to its downhill neighbor (DHN) (or queries it on an otherwise idle cycle), it 
copies the DHN basin label (either an assigned ID or null) to its own. Therefore, basin 
labels propagate uphill as reserves move downhill. Between passes, basin labels are 
copied uphill from local ridge cells to their corresponding local pits in uphill patches. 

Results 
Illustrations and performance statistics for the implementation were generated from runs 
on a Dell Precision T3600 desktop computer with a 4-core, 3.6 GHz Intel Xeon 
processor, 16 GB system memory, and an NVIDIA GeForce GTX 780 GPU containing 
2034 physical cores, executing at a clock speed of 976 MHz, and referencing 3 GB video 
memory.  

At the end of drainage accumulation modeling, each vertex has an accumulation value 
equal to 1 plus the number of its uphill cells. This value can be used for further modeling 
operations or illustrative purposes. For this project, the accumulation values are used to 
shade drainage segments to illustrate accumulation values. Drainage basin labeling is 
used both to illustrate basin membership and also to normalize accumulation values 
within basins. Figure 13 shows perspective views of an 8 x 8 patch grid (with 2 PN 
triangles per square grid cell) representing a hemisphere with colors representing basin 
membership. Since pit accumulation values equal the total reserves in a basin, an 
accumulation value at a vertex can be normalized by its pit’s accumulation, providing a 
consistent way to compare stream importance within and between basins. Figure 14 
illustrates the same 8 x 8 x 2 mesh rendering segments in pure RGB blue with alpha 
(transparency) varying with normalized flow. 

 

Figure 13. Perspective drainage basin views for a hemispherical sample database covering an 8 x 8 x 2 
triangle mesh. A shows a view from directly overhead with north at the top. B is a view from the side, 
looking north. In both cases, segment color indicates its drainage basin membership. All lines are 1 pt. 
thickness. 
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Figure 14. Stream segments shaded by normalized accumulation, using same data and viewpoints as in 
Figure 13. The normalized flow for a segment is shaded as a pure RGB blue color with alpha 
(transparency) varying with normalized flow. Segments are rendered in 2 pt. lines for clarity. 

One of the biggest challenges for running compute shaders in the OpenGL rendering 
pipeline is to complete an analysis before a video timeout can occur. Video systems, such 
as those based on the NVIDIA chipset used for this project, monitor the amount of time 
that a process blocks refresh attempts. When the process exceeds a preset value, the video 
driver crashes ungracefully, leading to a black screen or a system reboot. Although the 
preset timeout value can be extended, it is more desirable to find and fix the processing 
bottlenecks that led to the condition. In this project, building the drainage direction map 
dominated all other activities, accounting for approximately 773 milliseconds (ms). Since 
default video timeout values are often in the range of 2 seconds or less, analyses for 
larger meshes could easily exceed this value. 

The expected running time of the drainage accumulation procedure depends on surface 
complexity. In the best case, a stream flowing across a monotonically sloping landscape 
parallel to a patch grid axis would require a number of passes linearly dependent on the 
grid dimension along that axis. However, as a stream channel oscillates across the grid, 
the number of passes increases with the number of patch crossings (Figure 15).  

 

Figure 15. In A, a channel running from the left to the right crosses 6 patches, requiring 6 server passes to 
drain. In B, an oscillating channel makes 24 patch crossings, requiring as many passes to complete. 

Each drainage accumulation run of the 8 x 8 x 2 patch dataset requires approximately 60 
ms of processing time, including server side and client side operations. This is less than 
1/10 the processing time required to create the drainage direction map.  
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Future Work and Conclusion 
Clearly, the first step toward increasing the efficiency of this program must be to reduce 
the time required to create the drainage direction map. A relatively simple, short-term 
solution to this problem is to partition drainage direction mapping into regions that can be 
processed independently in multiple passes. By assuring that the number of tessellated 
vertices does not exceed the number of physical processors in a given pass, and that 
control is returned to the client (the CPU) between passes, processing will be as efficient 
as possible and video timeout detection will reset between passes to avoid system 
crashes.  

However, this approach does not reduce the total workload required to make the drainage 
direction map. In this exploratory project, each patch determines edge and corner vertex 
drainage independently of all other patches. This leads to highly redundant drainage 
direction mapping for all mesh-internal edge and corner vertices in the mesh. This can be 
fixed easily by creating edge and corner data structures so that vertices in each category 
can be processed once and only once. Given that each internal edge vertex is currently 
processed twice, and each internal corner is mapped 6 times for every frame, the savings 
should be very substantial. Some more time can be saved by partitioning tessellation 
vertex data out to the processor workgroups that refer to them. In OpenGL server-side 
processing, dedicated workgroup memory provides faster data access than does global 
shader storage buffer object memory, the current repository for all tessellated vertex data. 

Beyond the exploration of efficiencies, future versions will operate on TIN elevation 
models to avoid the generation of internal pits. Since a TIN mesh has irregular topology, 
supporting data structures will be required to explicitly state corner and edge adjacencies 
that are implicit in the regular grid model. Internally, all TIN patches have the same 
topology (an internal triangular tessellation with a fixed number and placement of edge 
and internal sampling points) but differ on their internal geometry. Since OpenGL 
tessellates all patches with the same winding order (clockwise or counterclockwise, as 
determined by user settings), consistent rotations of the barycentric coordinates of 
adjacent triangles will limit side adjacency coordinate matching to 3 cases, allowing for 
relatively simple lookup table construction and access. Fortunately, these data structures 
can be created in 1-time operations preceding the rendering loop. 

Finally, future versions will allow for rendering meshes with multiple tessellation levels. 
Since 1 of the 3 barycentric coordinates for an edge vertex measures the ratio of its 
distance along the edge relative to the bounding corners, it can be used in real-time to 
identify the closest matching vertex on the same edge in an adjacent patch with different 
tessellation levels. Then it can access the connected vertices for that vertex and search for 
the steepest downhill path as for the fixed grid mesh model.   

OpenGL compute shaders provides a mechanism for combining analytical operations and 
rendered output in real-time. Although concurrent programming on GPUs is often 
unintuitive, it is nonetheless important to consider its relevance for GIS and cartography 
applications. As future computing environments move away from monolithic CPU 
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architectures and toward distributed, concurrent computing models, such models may 
also become the norm in coming application development cycles. 
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