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ABSTRACT: Technologies for capturing large amounts of real-time and high-detail data about 

the environment have advanced rapidly; our ability to use this data for understanding the 

monitored settings for decision-making has not. Visual analytics, creating suitable tools and 

interfaces that combine computational powers with the human’s capabilities for visual sense 

making, is a promising approach. Geosensor networks monitor a range of different complex 

environmental settings, collecting heterogeneous data at different spatial and temporal scales. 

Similarly domain experts with specific preferences and requirements use the collected data. 

Additionally, long-term monitoring networks may aim to increase sensor node longevity by 

minimizing storage and communication load. Based on these aspects, four key challenges for the 

extraction of knowledge about environmental objects and events from geosensor data are 

identified: dynamics and uncertainty of the continuous stream of recorded data; different scales in 

data collection but also data analysis at a range of aggregation levels; decentralized data 

processing and storage; and evaluation of the effectiveness, efficiency and completeness of 

implemented decentralized visual analytics approaches. 
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Introduction 

Recent technological advances in miniaturization of electronics and wireless 

communication technology are vastly improving our ability to capture real-time and high-

detail data about the environment. An increasing range of environmental applications is 

adopting new sensing technologies for in-situ monitoring purposes. In particular, wireless 

geosensor networks (GSN) are arguably leading a “revolution” in environmental sciences 

(Hart & Martinez 2006). The new sensing technologies, combined with increasing needs 

to understand the pressures on our environment, are leading to another step change in the 

amount and complexity of data that are being generated. These new real-time data 

sources are changing the way environments are monitored to detect impacts across the 

spectrum of natural and built environments, whether monitoring changes to native or 

agricultural vegetation, to tracking mobile people in an urban transportation network, or 

moving fish in a sensitive river habitat. 

However, advances in data capture have not been matched by advances in our ability to 

extract useful knowledge about environmental changes from these new data sources. That 
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“we are drowning in information but starved for knowledge” is no less true today, two 

decades after this adage was first coined (Naisbitt 1982). Making smart use of the 

collected data is imperative to improve understanding of the monitored environments, to 

support effective decision-making, and thus to justify the investments in environmental 

sensing and monitoring. Visual analytics, the combination of human and computational 

powers in suitable tools and interfaces, to “detect the expected and discover the 

unexpected” (Keim et al. 2010) is a promising approach for improving sense-making.  

This article explores examples of different environmental monitoring settings, the 

characteristics of the employed (wireless) geosensor networks, and the types of data 

collected through them. The specific characteristics of those settings, networks, and data 

provide a specific focus for the implementation of visual analytics approaches. Based on 

this, four key challenges in supporting the identification of meaningful patterns in 

environmental data from geosensor networks are identified. 

 

Environmental monitoring settings 

Rehabilitating native fish populations 

In Australia, and indeed in many environments worldwide, trees and branches that fall 

into rivers provide important structural habitat for fishes. Unfortunately, over the past two 

centuries, many of these habitats were removed (desnagged), to allow easier navigation 

and faster delivery of water for irrigation. This has led to a significant reduction in native 

fish communities as many native fish use woody environments as a primary habitat. One 

current project that addresses this loss of habitats is being undertaken on the Murray 

River, in South Eastern Australia. The project is ‘resnagging’ some areas of the Murray 

River (reintroducing dead wood, Figure 1) to increase native fish populations. A data 

collection framework has been implemented to confirm that restoring woody habitats 

does not just redistribute the existing population but results in more fish. The most robust 

way to measure a potential increase in fish numbers is to estimate the population growth 

rate (population growth = birth – deaths + immigrants – emigrants) (Lyon et al. 2010). 

  

Figure 1: left) Resnagging Murray River, Australia; 

right) Snag mass density in different river sections after resnagging 
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Data on immigrants and emigrants is being collected using radio-tagged fish. 18 logging 

towers record the movements of the tagged fish between different river zones bordered 

by them (Figure 2). The towers are equipped with directional antennas and are able to 

detect when a tagged fish moves from one zone to another by passing one of the logging 

towers. Thus, the collected fish movement data is location-based as opposed to the 

recording of time- or change-based trajectory data, which is more common in object 

tracking (Andrienko et al. 2011). Four of the monitored river zones are priority 

resnagging areas (colored zones in Figure 2). This allows for comparison of fish 

movement between unchanged desnagged and resnagged river zones. The spatial 

extension of the collected data is normally constrained to the course of the river. 

However, during times of flood, fish may also move into adjacent flood plains. 

 

Figure 2: Logger tower schematic of the resnagging programm in Murray River; colored zones f, h, d and c 

mark priority resnagging sites (Lyon et al. 2010) 

 

Environmental effects of conservation management 

The Victorian Government’s EcoTender program aims to provide environmental 

improvements by allowing private landholders to compete for contracts. These contracts 

enable landholders to receive funding to manage their land and water resources in 

accordance to the program’s goals (Eigenraam et al. 2005). One of the challenges is the 

monitoring of the EcoTender sites to collect information about the progress and impact of 

the initiative. The landowners report annually the implementation and progress of their 

plan by detailed descriptions of actions taken and a series of photographs (DSE 2012). In 

order to improve this mainly manual process, and its limitations in regard to the detailed 

recording of changes in the environment, two sites were chosen as test sites for deploying 

wireless sensor nodes with different sensor capabilities. 

The data were collected employing a geosensor network including iButton and iMote 

nodes (Figure 3). They measured and recorded temperature in °C, humidity as %, and 

light values in lux. The sensors also kept timestamps for each measurement. Each of the 
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two sites was visited twice in March and June 2010 with the sensors recording data every 

five minutes for about 6-8 days depending on duration of battery life. Additionally, the 

approximate location of each node in space was recorded on a map. 

       

Figure 3: Sensor network nodes iButton (left) and iMotes (middle);  

part of the deployment map of site 2 showing approximate node locations (right) 

 

Environmental conditions on the Great Barrier Reef 

The Australian Institute of Marine Science (AIMS) needs to collect environmental data to 

understand the complex environmental dynamics of marine systems such as the Great 

Barrier Reef and subsequently to effectively manage anthropogenic stresses (Kininmonth 

et al. 2004). While such extensive structures cannot be monitored in their completeness it 

is critical that the strategic and opportunistic collection of data covers a range of spatial 

and temporal scales and permit answering specific research questions. One of the key 

questions is how various environmental factors impact on coral reefs. For example, 

increases in sea temperature are highly stressful to corals and result in coral reef 

bleaching (Berkelmans et al. 2004). 

A number of autonomous weather stations measure air temperature and water 

temperature in multiple depths, salinity, wind speed, wind direction, light, and oxygen at 

different reefs in the Great Barrier Reef in North Queensland (Kininmonth et al. 2004). 

The data is quality checked and communicated directly, or via other weather stations 

when direct communication is not possible, to the central data server for storage and 

further analysis. If communication is not possible the sensors can store the information 

for several days during which the weather stations can be accessed and the data 

downloaded directly. The collection of information in different sea depths adds another 

dimension to data analysis. Understanding and analyzing data in three spatial and a 

temporal dimension challenges both visual and computational analysis methods. 

Traffic monitoring and guidance 

Transportation is understood to contribute significantly to environmental pollution, and 

waste of energy, time, and other resources. Technologies to capture data about traffic in 

urban settings have advanced and are now an integral part of central decision-making 

(e.g., fleet management), infrastructure-based decision-making (e.g., local traffic light 
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management), or individual decision making (e.g., car navigation services accessing real-

time traffic data, or safety-focused applications of vehicle-to-vehicle communication). 

The visualization of such real-time traffic data and its consumption in individual 

decision-making has not been well studied, however. 

Traffic management centers all over the world can show on large screens the current 

traffic situation on a city’s transport networks. Some services, such as the traffic mashup 

on Google Maps (Figure 4), provide similar information to the public for their individual 

decision-making. This data can be collected in various ways. For example, inductive loop 

counters register the number of all vehicles passing by, and these data are collected by 

local traffic authorities. Traffic cameras can form an alternative source. Mobile phone 

operators can monitor the electronic signals that are exchanged between mobile phones 

and the base stations that serve them, creating a real-time picture of where the phones are 

and how fast they are moving. Broken down to average speeds this data is anonymous 

and can be shared with information service partners. And finally, tracking vehicles of 

particular fleets, for example, taxis or courier services can serve as sampling of the traffic 

flow and produce similar data. 

 

Figure 4: Part of a Google Maps® live traffic map: color-coded is the vehicle density (alternatively, 

depending on the environmental sensors, the average vehicle speed) along street segments. 

 

A closer look at the communication by visual means raises doubts about the usability of 

this data. Car drivers recognizing that a segment ahead along their route has heavy traffic 

can draw unintended or at least sub-optimal conclusions. They cannot recognize whether 

the congested segment will still be congested when they will arrive at that segment; they 

cannot recognize whether the presented information to the public will guide many other 

drivers into their alternative routes; and they cannot recognize whether their route, even if 

congested, is no longer their optimal route. Furthermore, the use of colors has a 

psychological effect that may not be supported by the actual impact of the traffic situation 

on traveling along these streets.  

 

Proceedings - AutoCarto 2012 - Columbus, Ohio, USA - September 16-18, 2012



 

 

Wireless geosensor networks and decentralized computing 

The above example applications of sensor networks (summarized in table 1) store the 

data in the sensor nodes where it is collected for later download or relay the data to a 

central storage. While this allows processing of the data in a single location, it can be 

quite restrictive in terms of network deployment, as the nodes need either to be accessible 

or to possess enough energy and communication strength to send the data. We can think 

of a number of settings where those restrictions prohibit a sensible deployment of sensor 

networks. For example, in settings where sensors have to be very small and thus need to 

rely on limited energy resources but still should operate for as long as possible. In another 

exemplary setting, the sensors may be distributed over a large area or are collecting large 

amounts of data in short time intervals so that communicating all the data to a central 

server is impractical or even impossible. In such cases we may gain efficiency and 

longevity of the monitoring network through decentralized computing (Duckham 2012). 

In decentralized networks each node processes its own data and/or communicates with its 

immediate neighbors only. This reduces the load on network communication and, thus, 

energy supply (e.g. Chatterjea et al. 2006), but also means that the collected data can 

never be accessed as a whole. However, suitable decentralized algorithms allow 

achieving similar data processing results or getting answers to specific queries as would 

be possible when accessing and processing the whole data set (Duckham 2012). 

 

Table 1: Summary of the case study characteristics. 

Case study Organisation Data collection Scales Data management 

Fish habitat 

monitoring 

Arthur Rylah 

Institute 

Logging towers 

recording passing of 

radio-tagged fish 

18 towers along 

~200km of Murray 

River, since 2006 

Stored in logging 

towers, analyzed 

centrally 

Conservation 

management 

AmSI group, 

University of 

Melbourne 

Sensor nodes 

recording 

temperature, humidity 

and light  

Two sites, each 

~1km
2
, each 

monitored twice for 

6-8 days in 2010 at 

5min intervals 

Stored in sensor 

nodes, analyzed 

centrally 

Great 

Barrier Reef 

monitoring 

Australian 

Institute of 

Marine 

Science 

Weather stations and 

buoys recording, e.g., 

temperature, salinity, 

or wind speed 

Various scales from 

spanning all reefs 

down to single 

corals 

Relayed to central 

storage or stored 

locally, some 

decentralized data 

processing 

Traffic 

monitoring 

Several, e.g. 

local traffic 

authorities 

E.g., inductive loop 

counters, traffic 

cameras, mobile 

phone information, 

and fleet information 

Various Generally 

centralized data 

storage and 

analysis 
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Smart data usage 

The presented examples of networks monitoring natural and built environments show the 

diversity of goals and data collected. Based on those examples the following sections 

define the ‘typical’ data analyst, summarize the characteristics of the different data sets 

and tasks, and use these to focus the discussion of visual analytics methods for gaining 

knowledge from the collected data. 

Data analysts 

Usage and understanding of collected environmental data is largely dependent on expert 

users, like scientists, engineers, and resource managers, with existing domain knowledge 

and specific research questions. It is they who need to understand and to judge the 

significance of complex processes and interrelated events of an environmental setting that 

are potentially discernible from patterns, structures, or outliers in the collected data. It is 

they who are motivated by wanting to understand and to gain significant insight into the 

data. There is a large amount of evidence that suitable visualizations, especially when 

paired with appropriate interaction, can support such explorative tasks in large data sets 

(e.g., Andrienko & Andrienko 2010; Lam et al. 2011; Ware 2008; Wood et al. 2007). 

Tukey (1977) defined the concept of exploratory data analysis, which is more about 

exploring the data and generating hypotheses than answering questions or confirming 

hypotheses. Those concepts were taken up and expanded for the visual analysis of spatial 

and temporal data (e.g., Andrienko & Andrienko 2006). From our experience some users, 

especially engineers, often also want numerical answers and statistics, for example, event 

probabilities or confidence intervals. Those users are often less likely to sift through data 

for hours and employ a range of different visualizations to detect patterns in the data. 

Perer & Shneiderman (2008) have proposed a systematic but flexible guiding process for 

domain experts doing exploratory data analysis that may be adaptable to suit different 

expert users’ requirements. This may also include a combination of statistics and 

visualizations for exploratory tasks (Perer & Shneiderman 2009). A simple 

implementation may visually encode data according to calculated values, for example, 

coloring values above the mean value in red. A combination of statistics and 

visualizations was also successfully employed to assess the quality of data or more 

specifically to find, for example, errors, duplicates or extreme values (Kandel et al. 

2012). Additionally, there often exists a knowledge gap between visualization researchers 

and domain experts (Wijk 2006) and both parties need to work on closing it through 

common understanding of the goals and context to achieve useful visualizations.  

Another important aspect of using visualizations regards the ‘selling’ of research 

findings. Researchers and analysts need to find ways to convey processes and patterns to 

the general public or a specific interest group, such as the Murray River’s recreational 

anglers. This is no constraint to the design of explorative visualizations or interfaces for 

the domain experts as it could include the same but also completely different methods or 

visualizations. Additionally, it should not be neglected that most audiences also have 

domain specific knowledge. People may be interested in the topic at hand and be willing 

to spend some time analyzing data, and thus could make a valuable contribution to the 

process of data exploration and gaining understanding (employing the principles of 

crowdsourcing, e.g., Howe 2009). 
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Data and tasks 

The spatiotemporal data collected by sensor networks in environmental monitoring 

settings shows some specific characteristics making it especially complex. Such data is 

typically: 1. highly detailed, at fine spatial and temporal granularity but also spatially and 

temporally auto-correlated; 2. highly dynamic, constantly changing with real-time 

environmental conditions; 3. heterogeneous, comprising data about a range of 

environmental variables, from water turbidity to gas concentrations; and 4. uncertain, 

using large numbers of low-cost, low-precision and accuracy sensors. Further, as a direct 

consequence of 1–3, the data also are highly voluminous. Additionally, if the data are 

collected and processed in a decentralized network we are constrained in the amount of 

data within a network that is accessible at a given time, space, or for a given query. 

Often data collection methods are designed and implemented with specific interests and 

research questions in mind. Talking to domain experts they state that the collected data 

normally allows them to achieve those specific goals and answering their research 

questions. However, experts also mention a feeling that the data could tell or explain a lot 

more if they knew what questions to ask or what to look for. Other studies with domain 

experts have reported similar notions of there potentially being more information in the 

data than what can be detected by evaluating specific hypotheses (Saraiya et al. 2006; 

Bleisch 2011). Purpose-directed data collection has the advantage of answering current 

research questions. However, it may make combination of data with other data sets more 

difficult, even though such combination may allow the analysis of the data in ways and in 

relation to different environmental variables that were not foreseeable at the time of data 

collection. Exploration of network data sets should lead to a better understanding of the 

type or volume of data needed for efficient and effective environmental monitoring. Such 

knowledge will help in improving or designing current and future data collection 

networks. 

A goal of visual data exploration is gaining insight (North 2006). It includes the analysis 

of the data sets from different perspectives and the visualization of them using different 

representations. For example, the fish data could be viewed as different fish changing 

river zones at recorded times or it could be the time stamped series of different fish 

swimming past a specific logger. For the visualizations we could choose to focus on the 

time series of moving fish, could use a spatial layout of fish movements or abstract the 

movement to a linear arrangement of zones that different fish move in and out of. Each 

representation may yield different insights and multiple interconnected views would 

allow harvesting the combined strengths (Roberts 2007). While the concept of gaining 

insights is useful it also makes it more difficult to evaluate the effectiveness of the 

visualizations as we may not previously know what we are looking for in the data 

(Saraiya et al. 2006). However, looking for ‘meaningful’ patterns implies that domain 

experts are able to make judgments in this regard. 

Methods supporting smart data usage 

The issue of extracting useful knowledge from complex data sources is a long-standing 

problem in the information sciences. Visual analytics approaches allow the combination 

of efficient spatiotemporal data mining algorithms for identifying candidate objects and 
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events with interactive visualization to assist domain experts in selecting meaningful 

objects and events from amongst these candidates. These two perspectives can 

additionally be combined through linked views. In one view, users could explore 

complex environmental data sets intensionally, for example, by applying and 

parameterizing spatiotemporal data mining filters. In the second view, users could 

explore the data sets extensionally, for example, by selecting meaningful objects or 

events from the data set. A special focus lies on the user, data, and task characteristics as 

discussed above, which are to some degree specific to the applications and especially to 

decentralized networks. This tight focus, including explicitly targeting expert users, 

allows the adoption of a hybrid methodology that blends the key strengths of established 

approaches in spatial data mining (e.g., Miller & Han 2009) and visualization (e.g., Ware 

2008). Spatial data mining allows for rigorous and objective computational evaluation; 

visualization provides effective mechanisms for human interaction and generating 

meaning. Additionally, it is important to evaluate the effectiveness and efficiency of 

those combined data analysis approaches. New ways for visualizing and analyzing data 

are regularly proposed but often with very little or no evaluation of their effectiveness 

(e.g. the proposed framework for visualization and exploration of events in sensor 

networks, Beard et al. 2008). 

The research we are currently conducting implements and evaluates visual analytics 

approaches for data from a range of monitored environments, which store their data 

mostly centrally (cf. table 1). However, a specific focus lies on how those visual analytics 

approaches can be adapted to be suitable for data collected with low cost wireless 

geosensor networks which require decentralized data storage and processing to reduce 

network load. As described above, this may mean dealing with incomplete or vague 

information about the location of the sensor nodes, such as node connectivity rather than 

coordinates, time lags, as nodes are not perfectly synchronized, or only partial access to 

the data. Any node could be chosen to tap into the network data and ask specific queries 

such as what were the highest temperature recordings in the selected area over the last 

three days. Three days is a short period of time. We may however, also be interested in 

long term monitoring data. One aspect of our research is thus concerned with defining 

what information needs to be processed and/or kept within a network or specific sensor 

nodes so that different queries can be effectively answered while not placing an unduly 

high storage and communication load on the network. This could mean storing different 

average values, calculating gradient information between nodes or keeping track of data 

peaks and pits over time. Continuous processing and analysis of the data locally or 

regionally within a network should be able to remove noise and outliers, detect patterns 

and also send out warnings when extraordinary events are detected. For centralized 

analysis of spatiotemporal data it is known that meaning can be revealed at several scales 

(e.g., Keim et al. 2010) and thus data may need aggregation at different levels. The 

concepts for visual analysis at different scales seem to match well with the concepts of 

decentralized computing and storage in sensor networks. However, testing will be needed 

to ensure that key data are retained and valuable insight can be generated similar to that 

of a centralized data analysis approach even though single nodes or local groups of nodes 

decide about storing or discarding data. 
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Challenges 

Technological developments are supporting the deployment of wireless sensor networks 

in an increasing variety of environmental monitoring settings. Enormous amounts of 

high-detail, dynamic, heterogeneous, and uncertain data are collected. But how can we 

understand the complex environments monitored and supporting decision-making? Based 

on the data characteristics, the discussions with domain experts, and the focus on 

decentralized data storage and processing for long-term environmental monitoring the 

following successive four key challenges are identified: 

• Dynamics and uncertainty: The potentially moving sensor nodes record variations in 

the monitored environmental factors. The data is collected as a continuous stream at 

potentially varying time intervals containing evolving information. Geographic 

location may be imprecise or only implicitly available through network connectivity. 

• Scale: While the data may be collected at different scales it may also reveal 

information at different levels of aggregation. Additionally, users may be interested in 

continuous data evaluation; may occasionally request specific, for example, spatially 

or temporally limited data; or are event-based prompted for data analysis. 

• Network load: Decentralized processing and decision-making is important to reduce 

storage and communication load. Different analysis scales or spatiotemporal 

autocorrelation could be used as input for processing and for the decision about what 

data to store (e.g., Chatterjea et al. 2006). 

• Evaluation: Evaluating the effectiveness and efficiency of visual analytics approaches 

is one important aspect. Additionally, it is essential to evaluate if reduced data storage 

and communication in the network, and thus not having access to the complete data set 

over space and/or time, leads to the same or similar data analysis results, as would a 

centralized approach. 
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